Đề bài: Cho dãy số \((u_n)\) với \(u_1=\sqrt{2};\,u_2=\sqrt{2+\sqrt[3]{3}};\,u_3=\sqrt{2+\sqrt[3]{3+\sqrt[4]{4}}};\,u_4=\sqrt{2+\sqrt[3]{3+\sqrt[4]{4+\sqrt[5]{5}}}}\,…\) Nêu quy trình bấm phím để tính \(u_{35}\).

(Câu hỏi của thành viên trên Facebook Diễn đàn)

Bài giải

Ta cần tìm:


\(S=\sqrt{2+\sqrt[3]{3+\sqrt[4]{4+\sqrt[5]{5+\,…\,+\sqrt[35]{35+\sqrt[36]{36}}}}}}\)

Ta có nhận xét \(S\) là số hạng của dãy số:

\(v_1=\sqrt[36]{36};\,\,\,\,v_n=\sqrt[n-1]{n-1+v_{n-1}}\)

với \(n=36\).
Nhập vào màn hình:

\(X=X-1:A=\sqrt[X]{X+A}\)

Sau đó bấm CALC.
+ Máy hỏi nhập giá trị ban đầu: Nhập 36.
+ Hỏi A: Nhập \(A=\sqrt[36]{36}\).
+ Nhấn dấu bằng liên tục cho tới khi \(X=2\).

Kết quả: \(u_{35}=1,911639216\).