Phần 6: Ứng dụng phương thức vector để tính toán các bài toán tổng hợp

Tóm tắt: Ở loạt bài viết này chúng tôi đưa ra những hướng dẫn cụ thể từ dễ tới khó về phương thức vector trong máy tính Casio fx580VNX. Từ đó giúp các học sinh giải quyết những bài toán về hình học Oxyz và những bài toán về phương pháp tọa độ trong không gian một cách dễ dàng và nhanh chóng hơn. 3 Phần trước chúng ta đã nói về những tính năng về phương thức vector và một số ví dụ minh họa cho những tính năng đó. Phần này chúng ta sẽ tận dụng tối đa những tính năng của phương thức trên để áp dụng vào giải quyết nhiều vấn đề phức tạp trong hình học không gian hoặc phương pháp tọa độ trong không gian.

Xem lại: PHẦN 5 – ỨNG DỤNG PHƯƠNG THỨC VECTOR TRONG CASIO FX580 VNX(V)

7. Các bài toán tổng hợp

Câu 13. Cho hình lăng trụ tam giác đều \(ABC.A’B’C’\) có cạnh bên bằng cạnh đáy. Đường vuông góc chung \(d\) của \(A’C\) và \(BC’\) cắt tại . Tính tỉ số \(\dfrac{NB}{NC’}\).

A. \(\dfrac{3}{2}\).         B. \(\dfrac{2}{3}\).         C. \(1\).         D. \(\dfrac{\sqrt{5}}{2}\)

Chọn hệ trục tọa độ \(Oxyz\) sao cho \(O\equiv I\) (\(I\) là trung điểm \(BC\)), tia \(Ox\) đi qua \(B\), tia \(Oy\) đi qua \(A\), tia \(Oz\) hướng lên trên.

Giải

Khi đó \(A’\left( 0;\dfrac{\sqrt{3}}{2};1 \right),C\left( -\dfrac{1}{2};0;0 \right),C\left( -\dfrac{1}{2};0;1 \right),B\left( \dfrac{1}{2};0;0 \right)\).

Ta có: \(\left\{ \begin{align}& \overrightarrow{BC}=\left( -1;0;1 \right) \\& \overrightarrow{A’C}=\left( -\dfrac{1}{2};-\dfrac{\sqrt{3}}{2};-1 \right)//\overrightarrow{u}=\left( 1;\sqrt{3};2 \right) \\\end{align} \right.\)

Nhập vector vào

Nhân 3 vector

Phương trình mặt phẳng \(\left( d,A’C \right)\) là: \(9x+\sqrt{3}y-6z=-\dfrac{9}{2}\)

Tọa độ điểm \(N\) là nghiệm của hệ phương trình:\(\left\{ \begin{align}& x=\dfrac{1}{2}-t \\ & y=0 \\ & z=t \\ & 9x+\sqrt{3}y-6z=-\dfrac{9}{2} \\\end{align} \right.\)

Nhập hệ phương trình vào và giải thôi

Suy ra \(N\left( -\dfrac{1}{10};0;\dfrac{3}{5} \right)\). Vậy tỉ số \(\dfrac{NB}{NC}=\dfrac{\sqrt{{{\left( \dfrac{1}{2}+\dfrac{1}{10} \right)}^{2}}+{{\left( \dfrac{3}{5} \right)}^{2}}}}{\sqrt{{{\left( -\dfrac{1}{2}+\dfrac{1}{10} \right)}^{2}}+{{\left( 1-\dfrac{3}{5} \right)}^{2}}}}\)

Chọn phương thức tính toán thông thường w1 và bấm thôi

Vậy chọn đáp án A.

Câu 14. Trong không gian với hệ tọa độ \(Oxyz\), cho hai đường thẳng

\({{d}_{1}}:\left\{ \begin{align}  & x=1+t \\& y=2-2t \\& z=-3-t \\\end{align} \right.\) và \({{d}_{2}}:\left\{ \begin{align}& x=4+3t \\ & y=3+2t \\& z=1-t \\\end{align} \right.\)

Trên đường thẳng \({{d}_{1}}\) lấy hai điểm \(A,B\) thỏa \(AB=3\). Trên đường thẳng \({{d}_{2}}\) lấy hai điểm \(C,D\) thỏa \(CD=4\). Tính thể tích \(V\) của tứ diện \(ABCD\).

A. \(V=7\).

B. \(V=2\sqrt{21}\).

C. \(V=\dfrac{4\sqrt{21}}{3}\).

D. \(V=\dfrac{5\sqrt{21}}{6}\).

Giải
Nhập ba vector sau đây vào máy tính:

\(\overrightarrow{u}=\left( 1;-2;-1 \right),\overrightarrow{v}=\left( 3;2;-1 \right),\overrightarrow{MN}=\left( 3;1;4 \right)\left( M\left( 1;2;-3 \right)\in {{d}_{1}},N\left( 3;2;-1 \right)\in {{d}_{2}} \right)\)

Ta có công thức

\({{V}_{ABCD}}=\dfrac{1}{6}AB.CD.d\left( AB,CD \right).\sin \left( AB,CD \right)\)

Tính tích có hướng \(\left[ \overrightarrow{u},\overrightarrow{v} \right]\)

Khoảng cách giữa hai đường thẳng \(AB,CD\) là \(d\left( AB,CD \right)=\dfrac{\left| \left[ \overrightarrow{u},\overrightarrow{v} \right].\overrightarrow{MN} \right|}{\left| \left[ \overrightarrow{u},\overrightarrow{v} \right] \right|}\)

Sin của góc tạo bởi hai đường thẳng \(AB,CD\) là

Sau đó chọn ra phương thức tính toán thông thường w1 để tính thể tích của khối tứ diện

Vậy thể tích của khối tứ diện \(ABCD\) là \(2\sqrt{21}\Rightarrow \) Chọn B.

—————————————————-

Trên đây là một số ví dụ tổng hợp về ứng dụng nhiều tính năng trên máy tính cầm tay (cụ thể là Casio fx-580VNX) để giải 1 số bài toán hình học tọa độ $Oxyz$ phức tạp. Tuy nhiên, máy tính không phải vạn năng, nên các bạn học sinh cũng nên chú ý vào học tập lí thuyết để có thể giải quyết được những bài toán khó nhằn. Chúc các bạn thành công.

Bài viết khó tránh khỏi thiếu sót, các bạn có thắc mắc hay bình luận hoặc góp ý thì đừng ngại gửi tin nhắn cho ad trên Fanpage: Diễn Đàn Toán Casio nhá.

Xem tiếp: TỔNG HỢP: ỨNG DỤNG PHƯƠNG THỨC VECTOR ĐỂ TÍNH TOÁN TRONG CASIO FX-580VNX